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" GLOBAL BETA MEASUREMENT FROM TWQO PERTURBED CLOSED ORBITS

M. Harrison, Fezmi]ab*, Batavia, Illinois
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Abstract

A simple algorithm is presented which transforms
two closed orbits observed at beam position monitors
around a ring into B and ¢ values at the monitors. The
procedure assumes the prior use of a second algorithm to
measure . and ¢ at the two dipole correctors used to
excite the perturbed closed orbits. Test results from the
program BETA, written to measure [ around the
Tevatron, are shown. The sensitivities of the measurement
to monitor digitisation and to quadrupole errors between
the reference correctors are estimated.

Introduction

If B and ¢ are the betatron function and phase of
a dipole corrector excited to give an angular kick of X¢,
then the closed orbit perturbation X at a beam position
monitor (BPM) with values 3 and ¢ is
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The conventional 'cusp’ beta measurement technique
assumes that the BPM is close enough to the corrector to
declare that their B, ¢ values are identical, leaving only

one unknown, P, on the right hand side. Disadvantages of
this method are that one closed orbit observation is needed
to measure B at only one BPM, and that the BPM may be
distant from the corrector. (In the realistic model of the
Tevatron used below, each corrector is 2.5 metres away
from a BPM, in a FODO structure of 30 metre half cell
length.)

The crux of the method described here is that two
closed orbit measurements, made after perturbing two
correctors with known P, and ¢ values, are sufficient to
determine P and ¢ at any BPM. Two closed orbit
measurements are sufficient to measure the betatron
function and phase at every BPM in the lattice.

Suppose that a BPM is beyond the two reference
correctors

X=X

¢c1 < ’c2 < $ )]
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and define the angles 6] and 84 as
O =5+ ¢, 8, = ¢-0,-1Q ()

where ¢4 is the design phase of the monitor. Substituting
2 and 3 into I, and rescaling, gives two simultaneous
equations in the two unknowns § and 8¢,

-
SEEC N S
xcl E'cl @)
2
Y, = 2509 x -3 B cos(8, + &)

X(:Z\/_

_where 8¢ is the shift of the BPM from its design phase.

After one more transformation of variables,

Y =(Y +Y¥Y)/2, 0 = (9 8 )/2
+ (1+2) + (1+ 2)
(5
Y =(Y -Y)yr2, 6 =(80 -6)/2
_ (l 2) _ (1 2)

equations 4 become

Y = JE cos 8 cos(@ + &¢)
+ + -
{6
Y = JB sin® cos(8 + 8d)
- + —

which are trivial to solve.

Notice that 0, = (dc; — 9c2) /2 1is constant for
all BPMs, while ©_ varies. The solution of 6 becomes
numerically sensitive, in practice, if the absolute value of
sin@, or cos@, is too small - less than 0.1, say. A
reference corrector pair should be chosen which avoids
this condition. ( For the sake of clarity, only those BPMs
which are beyond the correctors in phase are being
explicitly considered here. Nonetheless, the angles 0; and
05 may also be defined for BPMs before and between the
correctors, and all the results and comments except for
equation 3 are true in general.)

Determining the Corrector Betas and Phases

The solution above depends on knowing the beta



functions at the two correctors, and the phase advance
between them. These three values are determined by
creating an iterative loop which generates the values as a
function of the values themselves, and then by finding a
self-consistent solution.

The first step in this loop is to calculate § and ¢ at
the two 'anchor’ BPMs closest to the correctors by using
the method described above. Second, the values of the
Twiss parameter o are calculated at the anchors by
solving the Twiss parameter transformation equation

a a
B = T |p ™
Y

¥

anchor 2 anchor 1

The matrix T is a function of M, the 2 by 2 design matrix
describing betatron motion between the anchors,
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The third and final step in the loop is to propagate f and ¢
from the anchors to the associated correctors, using the
appropriate T matrices.

This algorithm also exhibits a numerical sensitivity
if the wrong corrector pair is chosen -- pairs with the
absolute value of cos(¢ep ~ &c1 — ®Q) close to 1 should be
avoided. This sensitivity arises because if the argument of
the cosine is Nmt —¢, then equation 1 is also satisfied by a
phase advance between correctors which is 2€ larger than
the true value. For example, the Tevatron is modeled for
test purposes as a lattice of 103 FODO cells, each with a
phase advance of approximately 68 degrees, for a net total
tune of 19.400 (including perturbations). In this case the
argument is =191 — 0.073 for correctors separated by one
cell, but is ~197w + 1.110 for comrectors two cells apart.
The latter configuration is used in the results which follow.

Test Resulis using a Model Tevatron Lattice

BETA is a FORTRAN-77 program incorporating
these algorithms which will soon be used for beta
measurements in the Tevatron proton collider at Fermilab.
The program generates input data mimicing a lattice of
thin lens FODO cells when operated in a stand alone test
mode. This mode is used for debugging and for estimating
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Figure 1 The effect of a quadrupole perturbation of

variable strength on the maximum and minimum J,
and on the sum of 1/B, in the model Tevatron lattice.

the expected measurement resolution.
Figure 1 shows the effect of a single quadrupole
perturbation, with a strength p times that of a regular

" quadrupole, at a defocussing location in the model

Tevatron lattice. BETA returns the correct B and ¢
values at the locations of all (ideal) BPMs to machine
precision over the range of perturbation strengths shown,
even when Br,.; is more than 3 times the design value.

The dashed line shows that the sum of 1/ at all the
BPMs remains within 1.4% of its design value even with
the strongest perturbations, reflecting the fact that the
azimuthal integral of 1/B, the net tune, is held constant.
This means that the corrector strengths can be calibrated
empirically, since if the corrector angles X' and X,'
in equation 4 have a systematic error, then the B values
found by the solution of 6 and the measured sum of 1/p
will also have systematic shifts.

Figure 2 shows how the resolution of the beta
measurement varies as a function of the size of the least
significant bit (LSB) in the analog to digital conversion of
the arc BPM signals. The two anchor BPMs are still
assumed to be ideal. In the Tevatron the nominal LSB size
is 140 microns, corresponding to an expected root mean

square error of about 1.5% . This resolution is almost
independent of the actual beta errors which are present
(p=1), but is inversely proportional to the amplitude of the
induced orbit distortion. The perturbed closed orbit has 8
millimetre peaks for the data shown, corresponding to the
difference between 14 millimetre orbits which are
probably possible in the Tevatron.

The solid line (S for symmetric) has the
perturbation placed diametrically across the lattice from
the middle of the two reference correctors. The dashed
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Figure 2 The sensitivity of the root mean square B

measurement resolution to the least significant bit size
in the arc beam position monitor signal digitisation.
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Figure 3 The sensitivity of the s B resolution to

the least significant bit size in the digitisation of the
anchor beam position monitor signals.

line (A for asymmetric) has the perturbation one cell to the
side of the symmetric position. Pseudo-random statistics
with 103 samples at one BPM per cell account for the
difference between solid and dashed lines.

Figure 3 shows how the measurement resolution
depends on the LSB size of the two anchor BPMs, under
the same assumed conditions, but with ideal arc BPMs.
The data are more noisy because errors are introduced
through digitisation at only 2 BPMs, not 103 as above. If
the electronics of the two anchor BPMs are modified to
have an LSB size of 70 microns, then the expected rms
resolution contribution due to this effect is about 0.6% .
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Figure 4 The effect of quadrupole errors between the

reference cormrectors on the measurement resolution.

Figure 4 shows the effect of quadrupole
perturbations between, rather than outside, the two
correctors. This causes an error in the measured corrector

" betas and phases, since the T and M matrices used in

equations 7 and 8 are no longer correct. An unrealistically
strong perturbation of strength p=0.5 must be introduced
to cause additional 1% resolution errors, showing that this
effect is not important. The errors scale roughly in
proportion to the distance between the anchor BPMs and
their associated correctors.

Conclusions

If the arc BPM signals in the Tevatron are digitised
with a least significant bit size of 140 microns, if the
anchor BPMs have an LSB size of 70 microns, and if £ 4
millimetre orbit distortions are possible, then the expected
resolution in measuring betas around the Tevatron is about
1.6 % . If instead the anchor BPMs have the nominal LSB
size of 140 microns, the expected resolution is increased to
about 2.3 % . If orbit distortions of only + 2 millimetres
are possible, then the expected resolutions are doubled, to
3.2 % and 4.6 %, respectively.
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